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Ontogenetic diet shifts are pervasive in food webs, but rules governing their emergence 
and the implications for trophic cascades are only partly understood. Recent theoretical 
advances in multispecies size spectrum models (MSSMs) predict that the emergence 
of ontogenetic diet shifts are driven primarily by size-selective predation and changes 
in the relative abundances of suitably sized prey. However, these assumptions have not 
yet been tested with data. Here, we developed alternative MSSMs based on different 
assumptions about the nature of species and size-based preferences and tested them 
using an extensive dietary database for the Eastern Bering Sea (EBS). MSSMs with both 
size and species-specific prey preferences correctly predicted approximately three-fold 
more of the diet links than those that assumed fixed species preferences. Importantly, 
these model assumptions also had a profound effect on the strength of fishing-induced 
trophic cascades and the emergent trophic structure of the community with and 
without fishing. The diet-informed models exhibited lower predation mortality rates, 
particularly for small individuals (less than 1 g) which, in turn, reduced the intensity 
and reach of fishing-induced trophic cascades up the size spectrum. If the level and 
size dependency of piscivory observed in EBS predators is typical of other systems, 
the potential for fishing-induced trophic cascades may be over-stated in MSSMs as 
they are currently formulated and parameterized. Representation of species-specific 
ontogenetic shifts in diet can strongly influence system responses to perturbations, 
and the extensions we propose should accelerate adoption of MSSMs as frameworks 
for exploring size-based food web theory and developing modeling tools to support 
strategic management decisions.

Keywords: community ecology, ecosystem-based management, fisheries ecology, 
ontogeny, trophic interactions

Introduction

Trophic cascades occur when a change in the abundance of individuals at one trophic 
level have attendant, alternating effects on abundances in adjacent levels. Although 
trophic cascades are recognized as an important phenomenon that can appear in a 
diversity of communities (Pace et al. 1999, Polis et al. 2000, Baum and Worm 2009), 
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our understanding of the processes that govern their occur-
rence, strength and reach in natural food webs is still evolv-
ing (Borer et al. 2005, Frank et al. 2007, Heath et al. 2014). 
In marine ecosystems, the harvesting of wild populations 
is a significant disturbance that can potentially trigger tro-
phic cascades (Baum and Worm 2009). For instance, reduc-
tions in cod populations due to fishing in the Baltic Sea and 
Northeast Atlantic have been implicated in the release of their 
planktivorous prey which, in turn, crop larger quantities of 
zooplankton (Frank et al. 2005, Möllmann et al. 2008), and 
reductions in marine mammal abundances have triggered 
some of the most prominent examples of trophic cascades 
in benthic, nearshore ecosystems (Estes and Duggins 1995, 
Estes et al. 1998). At large spatial scales, inter-regional com-
parisons of predator and prey time series suggest that top–
down trophic control (and potential for trophic cascades) 
may vary negatively with species richness and ocean temper-
ature (Frank  et  al. 2007). However, quantitative modeling 
approaches remain essential tools for clarifying the potential 
for trophic cascades and generating predictions of the direct 
and indirect effects of human activities in specific ecosystems 
(Link 2010, Heath et al. 2014).

Common food web modeling methods entail developing 
descriptions of networks consisting of nodes (representing 
species or functional groups) linked by predator–prey interac-
tions (Yodzis and Innes 1992, Williams and Martinez 2000, 
Brose et al. 2006). The models generally make the simplifying 
assumption that intrapopulation variation in prey composi-
tion or predator vulnerability can be ignored, which permits 
modeling of aggregate quantities such as total population bio-
mass and production. While such species-based models have 
met some success as tools for evaluating trophic cascades and 
patterns of bottom–up and top–down control in a range of 
systems (Yodzis 1998, Daskalov 2002, Bascompte et al. 2005, 
Österblom et al. 2007), they have also received criticism for 
their failure to account for potentially complex ontogenetic 
trophic shifts within species (Nakazawa 2015). If species pos-
sess specialized life history stages but are parameterized as 
generalists at the species-level, food web models may over-
state system robustness to species perturbations and removals 
(Rudolf and Lafferty 2011, Rudolf and Rasmussen 2013). 
Further, the models may be unable to resolve the trophic 
impacts of activities that alter the size distribution of popu-
lations. Fishing for instance may narrow the niche breadth 
of populations because large-bodied individuals, which tend 
to feed at higher trophic levels (Jennings  et  al. 2001), are 
disproportionately removed. Species-based food web mod-
els can be modified and species disaggregated according to 
life history stage or size class to account for ontogenetic diet 
shifts (Christensen and Walters 2004), but in practice this is 
usually done for a limited subset of species in the food web 
(Harvey et al. 2012, Geers et al. 2016).

Size spectrum models depict the abundance of individ-
uals as a continuous function of body size (typically body 
mass) and arose through efforts to explain regularities in the 
size structure of aquatic ecosystems (Andersen  et  al. 2016, 

Guiet  et  al. 2016, Blanchard et  al. 2017). The models rec-
ognize body mass as the fundamental attribute of an organ-
ism due to its outsized influence on physiological rates and 
ecological interactions. Initially, dynamic size spectra models 
ignored species identity and derived abundance–body mass 
predictions from individual-level processes governing preda-
tion, growth and mortality (Silvert and Platt 1980, Benoı ̂t 
and Rochet 2004, Shin and Cury 2004, Blanchard  et  al. 
2009). At their core, the models represent the flow of indi-
viduals into size classes through somatic growth and track 
losses due to natural and fishing mortality. Predation is gov-
erned by size-structured feeding rules and somatic growth is 
based on the energy available from food intake after account-
ing for metabolism and reproduction. By scaling individual-
level processes to the community-level, most parameters can 
be estimated from metabolic theory and the physiology of 
individual fish (Andersen et al. 2016).

Recent extensions to the general framework include rep-
resentation of distinct predator species that can be differ-
entiated by traits such as maturation and maximum sizes, 
feeding and growth rates and preferences for prey sizes and 
species (Hartvig  et  al. 2011, Maury and Poggiale 2013, 
Blanchard et al. 2014). Multi-species size spectrum models 
(MSSMs) include a more detailed physiological description 
of individual life histories than other modeling approaches 
that permit size and stage-structured diet shifts (e.g. Atlantis, 
Ecopath with Ecosim, Gadget; Persson et al. 2014) and their 
ability to represent species and their fisheries, which are inher-
ently size-selective, make them useful tools for evaluating har-
vest tradeoffs and management strategies (Houle et al. 2012, 
2016, Blanchard et al. 2014, Kolding et al. 2015, Zhang et al. 
2016, Jacobsen et al. 2017). In previous MSSM simulation 
studies, removal of large individuals through fishing triggered 
damped oscillations down the size spectrum, analogous to 
the alternating changes in abundance with trophic level that 
typify top–down cascades in conventional food chain models 
(Andersen and Pedersen 2010, Houle et al. 2012, Rossberg 
2012, Szuwalski et al. 2017).

Ontogenetic diet shifts and trophic dynamics in 
MSSMs emerge from rules governing size-based predation 
(Hartvig  et  al. 2011, Andersen  et  al. 2016). Predator diet 
composition is a function of the relative abundances of the 
prey encountered by a predator and the predator’s prey size 
and species preferences (Fig. 1). In MSSMs, size preference 
is represented using a prey size selectivity function, or feed-
ing kernel, and different prey species preferences are reflected 
in coefficients that effectively scale prey encounter rates. The 
prey species preference coefficients (herein termed ‘prey spe-
cies preferences’) are invariant with predator size, and any 
emergent ontogenetic shifts in diet composition are driven 
by changes in the relative abundances of suitably sized prey 
(Hartvig et al. 2011). As represented in MSSMs, prey species 
preference can be conceptualized in a multitude of ways. For 
instance, these scaling coefficients have been parameterized 
to relate the potential effects of predator–prey species spatial 
overlap on prey encounter rates (Blanchard et al. 2014) and 
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to scale prey encounter rates according to relative predation 
risk (Jacobsen et al. 2017).

Traditional approaches to food webs have focused on the 
role species-averaged traits such as body size and predator to 
prey body mass ratios have in determining the occurrence 
and strength of predator–prey interactions (Riede  et  al. 
2011, Naisbit  et  al. 2012, Gravel  et  al. 2013), but intra-
specific patterns have received less attention (reviewed in 
Brose et al. 2017). In contrast, size spectrum models origi-
nally focused on how dynamical, purely size-based interac-
tions give rise to the size spectrum. With the introduction 
of MSSMs, intraspecific variation in predator diets can 
now be fully resolved within a dynamic food web model-
ing framework. Although there is experimental and observa-
tional evidence supporting aspects of the prey size-selection 
mechanism in MSSMs (Ursin 1973, Floeter and Temming 
2003, Tsai et al. 2016), surprisingly, no attempts have been 
made to test model adequacy in relation to actual preda-
tor diets, thus leaving their level of realism with regard to 
ontogenetic diet shifts and the resulting trophodynamics an 
open question.

In the present study, we explicitly test the hypothesis 
that rules governing prey selection in MSSMs adequately 
capture predator–prey interactions in a real ecosystem. To 

do so, we calibrated MSSMs to the EBS, one of the most 
productive ecosystems in the world (Aydin and Mueter 
2007), and utilized a wealth of fish predator diet data from 
an extensive ecosystem and fisheries monitoring program in 
the EBS (Livingston et al. 2017). We empirically test a core 
assumption in MSSMs, namely, that prey preference (i.e. 
the scaling of prey-specific encounter rates) is invariant with 
predator size. We do this by developing two sets of alterna-
tive MSSMs. The first model set consists of size-invariant 
prey species preferences that are derived from different 
assumptions about the processes influencing prey preference 
(Blanchard et al. 2014, Jacobsen et al. 2017, Szuwalski et al. 
2017). Following the approach of previous studies, the mod-
els were calibrated to the EBS using biomass and catch data. 
For many fish predators, the assumption of size-invariant 
prey species preferences may not hold because prey encoun-
ter rates and capture success can change with ontogenetic 
shifts in morphology, behavior, feeding mode or habitat use 
(Werner and Hall 1988, Juanes  et  al. 2002, Mindel  et  al. 
2016). We therefore developed a second set of MSSMs 
that contain a novel extension that enables size-varying 
prey species preferences. Diet data were used to tune the 
size-varying prey species preferences. All models were cali-
brated using data from one time period (1982–1991) and 
were projected forward using fishing mortality time series. 
The ability of the models to predict predator–prey interac-
tions were evaluated for a later time period (2005–2014). 
We assess the consequences of these alternative prey species 
preference assumptions on ecosystem responses to fishing 
in terms of emergent trophic structure and trophic cascade 
strength and reach. If predator preferences for fish species 
are lower in diet-relative to nondiet-informed models, we 
would expect less top–down control and weaker fishing-
induced trophic cascades.

Material and methods

Eastern Bering Sea MSSM

We developed an MSSM based on source code for the R 
package ‘mizer’ (Scott et al. 2014). The main equations that 
compose the MSSM are based on those of Hartvig  et  al. 
(2011) as implemented in ‘R’ by Blanchard et al. (2014) 
and Scott  et  al. (2014). The model code and necessary 
data are provided in an online repository along with 
scripts for stepping through the calibration procedure 
(<https://doi.org/10.6084/m9.figshare.7158635.v1>, 
Reum et  al. 2018). Here, we provide an overview of the 
model and elaborate specifically on how predation is for-
mulated. Full details of the EBS model formulation and 
parameterization are provided in Supplementary material  
Appendix 1.

Formally, the model provides predictions of the popula-
tion dynamics of each species i as described by its size spec-
trum, denoted Ni(w), where w  corresponds to body mass (g). 

Figure 1. An overview of predation in multispecies size spectrum 
models (MSSMs). A background resource spectrum (blue) consist-
ing of invertebrate prey and two fish population spectra (green and 
orange) are depicted. Suitably sized prey are determined using a 
feeding kernel (a log-normal prey size selectivity function). In the 
simplest case where prey species preferences of the predator do not 
differ, predator diet composition will reflect the relative biomasses 
of suitably sized prey. To illustrate, diet composition is depicted for 
the orange fish population at body mass w1 and w2 (note, cannibal-
ism occurs). The grey bell curves correspond to the respective 
feeding kernels. Ontogenetic shifts in diet emerge because the rela-
tive biomasses of suitably sized prey change with predator body 
mass. Differences in preferences for prey species can change their 
representation in predator diets.
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The numerical density of individuals in the body mass range 
w1 and w2 is calculated from N w dwiw

w ( )∫
1

2  and the total 

biomass density (g m−3) of individuals is N w wdwiw

w ( )∫
1

2 .  
The size spectrum is obtained from a numerical solution of 
the classical McKendrick–von Foerster equation (Silvert and 
Platt 1978, Benoı̂t and Rochet 2004):

∂ ( )
∂

+
∂ ( ) ( )

∂
( ) ( )N w

t
g w N w

w
w N wi i i

i i= −µ 	 (1)

where gi(w) is the somatic growth (g year−1) and µi(w) the 
mortality (year−1) of an individual with body mass w (g). That 
is, N(w) is obtained by considering growth to be balanced 
by mortality at all body masses. The mechanisms driving 
growth and mortality operate at the level of the individual 
and are integrated up to the population level using Eq. 1, 
thus circumventing the need for explicit individual-based 
simulations (Blanchard et al. 2017).

The above equation is supplemented with a boundary 
condition specifying how offspring join each population:

g w N w Ri i i i i0 0, ,( ) ( ) = 	 (2)

where Ri is the reproduction of the offspring by mature 
individuals in species i and w0 is the body mass at birth of 
individuals. The numerical density of offspring is obtained from 
Ri/w0,i Ri/w0,i. Recruitment of each predator follows a Beverton–
Holt type stock–recruit relationship and recruitment occurs 
continuously throughout the year. Continuous recruitment 
results in species size spectra that are more stable relative to 
models with seasonally pulsed recruitment, but the aggregate 
community size spectrum remains relatively similar (Datta and 
Blanchard 2016). In addition to representing predator popula-
tions, the model also includes resource spectra to provide prey 
for the smallest sized predators and represent other food sources 
(Blanchard et al. 2009, Andersen et al. 2016). The model allows 
for species-specific traits that control growth rates, maturation, 
egg production, recruitment and maximum size, as described 
by equations in Supplementary material Appendix 1 Table A1 
where, for consistency, we have retained the notation used in 
previous MSSM studies (Hartvig et al. 2011, Blanchard et al. 
2014, Scott et al. 2014). Importantly, the model also includes 
species-specific prey species and size feeding preferences which 
govern emergent patterns in predator diets.

Conceptually, the predation process in MSSMs can be 
divided into two components, the first determines the pro-
portional contribution of different prey species to predator 
diets and the second sets consumption rates. In the first com-
ponent, the biomass of suitably sized prey is first obtained 
using a feeding kernel. Specifically, prey size preference is 
described using a log-normal selectivity function (Fig. 1). For 
clarity, we note that w hereafter corresponds to predator body 
mass, wprey is prey body mass and that the subscripts i and j 

denote species-level parameters or functions with respect to 
predators and prey. For predator species i, size preference is a 
function of the body mass ratio of prey to predator (wprey/w) 
following:

s w w
w w

i
i

i
prey

prey
/ exp

ln( /( ) = −
( )













β

σ2 2

2

	 (3)

where si(wprey/w) is the prey size preference, βi is the pre-
ferred predator to prey body mass ratio (that is, w/wprey) that 
sets the peak of the feeding kernel, and σi sets the feeding 
kernel width. The function represents the behaviorally and 
morphologically mediated choice of predators for prey when 
presented with prey of many sizes. Prey with body masses 
coinciding with the feeding kernel peak have a selectivity of 
1. The biomass density of suitably sized prey available to the 
predator is obtained by integrating across the product of the 
feeding kernel and the biomass spectrum of prey species j, 
Nj(wprey)wpreydwprey. That is,

ϕi j i jw s w w N w w dw, ,( ) = ( ) ( )
∞

∫ prey prey prey prey
0

	 (4)

where φi,j(w) is the biomass density (g m−3) of suitably 
sized prey. To account for a predator’s prey species prefer-
ence, φi,j(w) is multiplied by the unitless scaling coefficient 
θi,j which can take any non-negative value. Assigning θi,j a 
value of 0 inhibits predation by predator species i on prey 
species j altogether. Note that in standard MSSMs, θi,j is not 
a function of predator body mass; prey species preference is 
constant with respect to predator body mass (Hartvig et al. 
2011). At this stage, the proportional contribution of prey 
species j to the diet of predator species i in terms of biomass 
can be obtained from θ ϕ θ ϕi j i j j i j i jw w, , , ,/( ) ( )Σ .

In the second component, actual consumption rates 
are based on the functional response of the predator and 
the volume search rate (m3 year−1), Vi(w). The latter is 
described by the allometric relationship γiwq. Positive val-
ues of q indicate search rates increase with predator body 
mass and is assumed constant across species. However, γi 
is calculated from observed species-specific growth rates as 
described by the von Bertalanffy growth function (VBGF; 
Scott et al. 2014). The derivation of γi is based on several 
assumptions, including exclusive dependence by larvae on 
the background resource spectrum and specification of an 
initial feeding level. The resulting γi values, in conjunction 
with appropriate values for other interlinked parameters 
(Scott  et  al. 2014), lead to growth that roughly approxi-
mates size-at-age patterns predicted by the VBGF under 
average feeding conditions (Blanchard  et  al. 2014). The 
available biomass (g year−1) of prey species j encountered by 
the predator, Ei,j(w), follows:

E w V w wi j i i j i j, , ,( ) = ( ) ( )θ ϕ 	 (5)
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and the biomass of all encountered prey species is:

E w V w wi i j i j i j( ) = ( ) ( )Σ θ ϕ, , 	 (6)

The form of Eq. 5 shows that θi,j can be viewed as a sim-
ple scaling coefficient for encounter rates of prey species j. 
The quantity of Ei(w) ingested by the predator is obtained 
after considering satiation through a standard Holling 
type II functional response, where the feeding level fi(w) is 
calculated as:

f w
E w

E w I wi
i

i i

( ) = ( )
( ) + ( )max.

	 (7)

Imax.i(w) is the maximum consumption rate of the predator 
(g year−1), and is described by the allometric relationship, 
hiwn (for a species-specific derivation of h, Scott et al. 2014). 
Values of fi(w) range from 0 to 1, and the product of fi(w) and 
Imax.i(w) yields the biomass consumption rate (g year−1) of the 
predator. Although other functional responses can conceiv-
ably be used in size spectrum models, the version described 
by Eq. 7 has been widely adopted in MSSMs (Hartvig et al. 
2011, Blanchard et al. 2014, Scott et al. 2014, Andersen et al. 
2016). Given the preceding relationships for consumption 
rates, predation mortality (year−1) can be obtained follow-
ing the equation specified in the Supplementary material 
Appendix 1 (Table 1A, Eq. B17; Hartvig et al. 2011 for the 
derivation).

Predation in our model version differs from the preced-
ing description in regard to θi,j, which can now be expressed 
as θi,j(w). That is, the prey species preferences can vary as a 
function of w. For clarity, we retain usage of θi,j when refer-
ring to size-invariant prey species preferences which are 
still supported in the model, but use θi,j(w) in relationship 
to size-varying prey species preferences. Two other signifi-
cant changes to the original model code included separat-
ing the background resource spectrum into two distinct 
resource spectra to represent pelagic and benthic resources 
(Blanchard et al. 2009) and distinguishing sexes in instances 
where species showed strong sexual dimorphisms or sex-
specific fishery selectivities. The latter was undertaken to 
better represent population size structure. Details of these 
modifications and their implementation in the model code 
are presented in Supplementary material Appendix 1.

The EBS model consists of 11 fish species, 3 fish func-
tional groups and 3 crab species (Table 1). We included fish 
species based on their abundance in the region, data availabil-
ity, and/or commercial value. We included snow crab, tanner 
crab and red king crab because they are abundant, support 
economically significant fisheries, and are important prey 
items for several fish species. Combined, the included preda-
tors accounted for ~95% of the community biomass based on 
estimates from annual bottom trawl surveys. Individuals from 
five fish predators (arrowtooth flounder, northern rock sole, 
flathead sole, yellow fin sole and Pacific halibut) and all crab 
species were partitioned according to sex to accommodate 

Table 1. Predator groups included in the EBS model. Wmax is the maximum size of the predator group in the model. F corresponds to average 
(1982–1991) full selection fishing mortality. Total biomass and spawner stock biomass (SSB) estimates (1982–1991 average) were obtained 
from stock assessments (Supplementary material Appendix 1 Table A3 for citation details). Asterisk denotes predator functional groups con-
sisting of multiple species. For crabs, mature male biomass is indicated under SSB.

Common name Species name Sex Wmax (g) F (year−1) Total biomass (m tons) SSB (m tons)

Alaska skate Bathyraja parmifera both 21 401 0.019 353 594 71 688
Arrowtooth flounder Atheresthes stomias female 6953 0.028 298 414 141 181

male 2405 0.028
Flathead sole Hippoglossoides elassodon female 1692 0.037 648 047 123 179

male 900 0.037
Northern rock sole Lepidopsetta polyxystra female 1450 0.089 798 552 190 873

male 884 0.089
Pacific cod Gadus macrocephalus both 21 000 0.111 1 929 183 625 837
Alaska plaice Pleuronectes quadrituberculatus both 3232 0.050 697 879 301 365
Walleye pollock Gadus chalcogrammus both 4300 0.250 10 499 230 3 567 880
Yellowfin sole Limanda aspera female 1252 0.080 3 074 744 924 993

male 848 0.080
Pacific halibut Hippoglossus stenolepis female 37 536 0.335

male 14 504 0.335
Sculpin* both 5124 0.029 154 006
Forage fish* both 79 0.000 1 985 160
Other flatfish* both 2177 0.026 116 534
Snow crab Chionoecetes opilio female 164 0.926 969 500

male 1051 0.926 241 130
Tanner crab Chionoecetes bairdi female 373 0.390

male 1738 0.390 32 542
Red king crab Paralithodes camtschaticus female 2680 0.284

male 3661 0.284 17 442
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sex-specific fishery selectivities and notable sex-specific differ-
ence in maximum body size (Table 1).

Following previous MSSM studies, parameters controlling 
allometric relationships with standard metabolism, maxi-
mum consumption and search rate were held constant across 
species (Supplementary material Appendix 1 Table A2). 
Species- and sex-specific parameters related to growth rates 
and maturation and asymptotic sizes were obtained from 
stock assessments, other published sources or statistical analy-
ses of biological data collected by the NOAA Alaska Fisheries 
Science Center (Supplementary material Appendix 1 Table 
A3). For a subset of parameters, values were chosen based on 
general knowledge of the trophic ecology of species. In par-
ticular, βi which governs the prey size preference of predators, 
was chosen based on the functional role of predators, similar 
to previous studies (Law et al. 2016, Szuwalski et al. 2017; 
Supplementary material Appendix 1 Table A3). For most spe-
cies, size-dependent fishery selectivities were either sigmoidal 
or double-normal functions of body size, and parameters con-
trolling their shape were available in stock assessments, esti-
mated from information contained in the stock assessments, 
or obtained directly from assessment authors (Supplementary 
material Appendix 1 Table A5, A6). For the pelagic and ben-
thic resource spectra, slope and intercept parameters were 
estimated from plankton and benthos functional groups rep-
resented in a regional biophysical model with 10 km2 grid 
size resolution calibrated to the EBS (Hermann et al. 2016). 
Additional information on parameter estimation procedures 
are provided in the Supplementary material Appendix 1. 
Given the complexity of the model, its solution is obtained 
numerically (Andersen et al. 2016). The body mass axis was 
discretized on a log10 grid that spanned 10−6 to 104 g. The 
grid was divided into 100 bins of equal interval on the log10 
scale. The model was projected forward using a time step of 
0.25 year (Blanchard et al. 2014). The model was insensitive 
to use of shorter time steps or smaller body mass intervals. 
Details of the numerical solution procedure are available in 
Andersen et al. (2016).

Nondiet-informed models

The first model set consisted of three models with different 
θi,j parameterizations that correspond to different assump-
tions regarding the scaling of prey encounter rates. We refer 
to the model set as ‘nondiet-informed’. The models (M) are 
as follows:

(M1) Uniform prey preference. Predators consume prey species 
in proportion to the relative abundances of suitably sized 
prey. This corresponds to setting all θi,j to 1 (Houle et al. 
2016, Jacobsen et al. 2016, Szuwalski et al. 2017).

(M2) Spatial overlap. In this model θi,j are interpreted as scal-
ing coefficients for the encounter rates of prey based on 
the level of predator–prey spatial overlap. An index con-
veying the proportion of individuals in the predator pop-
ulation exposed to individuals in the prey population are 
used for θi,j (Hartvig et al. 2011, Blanchard et al. 2014).

(M3) Prey growth rate. Here, θi,j are interpreted as scaling 
coefficients that reflect relative predation risk of prey 
species (Jacobsen et al. 2017). Fast growing prey species 
are assumed to forage for longer periods compared to 
slow growing species which, in turn, comes at the cost 
of increased relative exposure to (higher encounters with) 
predators. An index of relative growth rates is derived 
from von Bertalanffy growth function (VBGF) param-
eters of each prey species and are used to set θj (note we 
drop the subscript i because the index is the same across 
predator species of prey species j).

In the uniform model (M1), all values in the species 
preference array were set to 1. For the spatial overlap model 
(M2), Schoener’s (1970) overlap index was calculated using 
numerical density estimates from annual bottom trawl sur-
vey data from the EBS. Trawl data were obtained from the 
Alaska Fisheries Science Center and the index was calculated 
following Kempf et al. (2010) and Blanchard et al. (2014). 
The index ranges between 0 and 1, with 0 corresponding to 
no shared spatial overlap and 1 indicting complete overlap.

Last, for the prey growth rate model (M3), VBGF param-
eters for individual prey species were used to calculate θj. 
Specifically, the species-specific prefactor hj from the allome-
tric relationship describing maximum consumption was used 
to obtain θj. For species with growth patterns approximated 
by the VBGF, Hartvig  et  al. (2011) proposed obtaining hj 
following:

h
K

Wj
j

j=
3 1 3

α Inf .
/ 	 (8)

where Kj and W jInf .
/1 3  are the von Bertalanffy growth rate and 

asymptotic body mass, respectively, and α is the assimila-
tion efficiency (fixed across species). The h parameter sets the 
time scale of species, with high and low values correspond-
ing to fast and slow growing species (Hartvig  et  al. 2011). 
Jacobsen et al. (2017) proposed relative values of hj be used as 
proxies for the relative vulnerability of species to predation, 
where

θ j

n

j
n

h
h=

∑
	 (9)

and n is the number of prey species.

Diet-informed models

In the second model set, we used diet data to estimate the 
function θi,j(w). In principle, θi,j(w) may take any number 
of shapes depending on the specific assumption or hypoth-
esis under consideration. Here, we used empirical diet data 
to directly inform the shape of θi,j(w). We provide a thor-
ough description of the procedure in Supplementary mate-
rial Appendix 1, but provide an overview here. Briefly, we 
obtained θi,j(w) using a two-stage approach.
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In the first stage, a ‘base model’ that assumed size-invari-
ant θi,j (M1, M2 or M3) was calibrated to 1980s biomass 
and catch data (see Model calibration). The calibrated model 
was projected to equilibrium, and the simulated predator diet 
compositions were obtained. Next, the ratio was obtained of 
the proportion of prey type j in the observed diets to the pro-
portion in the simulated diets. Ratios greater than 1 indicate 
that the predator prefers the prey species j more than pre-
dicted by the base model, while values less than 1 indicate the 
opposite. The ratios were then modeled as a smooth spline 
function of predator body size. The fitted spline functions 
were used to predict ratios to all predator size classes, and the 
predicted values were multiplied by θi,j from the base model 
to obtain θi,j(w). Mean observed diet proportions used in the 
procedure were obtained by pooling diet data from individu-
als within the same log10 body mass bins used to discretized 
the body mass axis for obtaining the numerical solution of the 
model. Predators spanned 10−3 to 104 g in body mass result-
ing in 71 body mass bins (Supplementary material Appendix 
1 for diet data preprocessing and calculation details).

In the second stage, parameters controlling species recruit-
ment were re-estimated (see Model calibration) but assuming 
θi,j(w). For predators lacking diet data (crabs, Alaska skate), 
size-invariant θi,j from the base model were retained. We 
attempted the procedure using M1–3 as base models and 
refer to the second model set (hereafter M4–6, respectively) 
as ‘diet-informed’.

The two-stage method we used to tune θi,j(w) enabled 
us to avoid direct estimation of θi,j(w) through numeri-
cal optimization. Conceivably, a joint likelihood function 
could be developed that incorporates diet and biomass data 
and simultaneously estimates all parameters. However, the 
most recent MSSM versions (including the present version) 
are computationally demanding, and estimating more than 
15–20 parameters through numerical optimization meth-
ods becomes increasingly infeasible given the time demand 
(Andersen et al. 2016). The additional number of parameters 
required for directly estimating θi,j(w) would exceed a hun-
dred given the number of predator–prey linkages and the 
potential for strong nonlinearity.

Model calibration

Following previous studies, the models were calibrated by 
tuning parameters controlling the maximum recruitment 
of species, Rmax.i which effectively scales species abundances 
(Blanchard et al. 2014, Jacobsen et al. 2016, Szuwalski et al. 
2017). That is, Rmax.i corresponds to the maximum possible 
number of newly hatched individuals (individuals per vol-
ume, in this case m3) a species can produce. Specifically, we 
compiled information on species catches, spawner stock 
biomasses (SSB) and population biomasses from individual 
species stock assessments or bottom trawl surveys (Table 1). 
For one important group (forage fish), system-wide biomass 
estimates were available from neither source, and a biomass 
estimate from a mass-balance model calibrated to the 1980s 

was utilized (Table 1). All biomass and catch estimates from 
a ten year period (1982–1991) were averaged and parameter 
estimation was performed by minimizing the sum of least 
squares between the log predicted and log average biomasses 
(either SSB, total biomass or both depending on availability 
of estimates) and catches using the quasi-Newton method 
with box constraints ‘L-BFGS-B’ in the R optimization func-
tion ‘optim’. For fished species, the full selectivity fishing 
mortality (F) was set to values from stock assessments aver-
aged over the same ten year period (Table 1). The models 
were run until equilibrium was reached as part of the param-
eter estimation procedure. For some of the models, oscilla-
tions emerged that stemmed from internal trophic dynamics. 
We therefore averaged biomasses and catches over a 25-year 
period after equilibrium or quasi-equilibrium was reached 
(Supplementary material Appendix 1 Fig. A2).

All three models showed strong linear relationships 
between observed and predicted mean 1980s biomasses and 
catches (Pearson’s correlation coefficient, R: 0.94 and 0.99; 
Supplementary material Appendix 1 Fig. A1). To ensure 
the calibrated models produced plausible body growth and 
stock dynamics, we qualitatively compared simulated growth 
curves with empirical size-at-age data and examined time 
series of projected stock SSB and catches under historical 
fishing mortality rates and in reference to estimates from 
single species stock assessments. The calibrated models gener-
ated similar growth curves for predators (averaged over the 
calibration time period) that fell within the observed size-
at-age data (Supplementary material Appendix 1 Fig. A3). 
Alaska skate, arrowtooth flounder, flathead sole, Alaska plaice 
and yellowfin sole growth curves were on the upper end of 
the observed range of size-at-age data, while the remaining 
species were closer to the median (Supplementary material 
Appendix 1 Fig. A3). The calibrated models also produced 
plausible and similar stock dynamics and catches when 
forced with historical fishing rates (Supplementary material 
Appendix 1 Fig. A4).

Of the diet-informed models, two were successfully cali-
brated (M5 and M6); predicted and observed catches and bio-
masses were highly correlated (R: 0.94–0.98; Supplementary 
material Appendix 1 Fig. A1). Convergence on stable Rmax 
estimates for M4 was not possible despite restarting the opti-
mization algorithm with different initial parameter values, 
longer spin-up times and the use of several other optimiza-
tion algorithms. This was likely related to overly high preda-
tion rates resulting from assuming prey species preferences of 
1 for Alaska skate which lacked diet data and was, in turn, 
prey to few other species. The diet-informed models also gen-
erated growth curves that were very similar to the nondiet-
informed models (Supplementary material Appendix 1 Fig. 
A3) and produced plausible stock dynamics as well. Among 
species projections under historical fishing rates, walleye pol-
lock, snow crab and tanner crab differed the most relative 
to the nondiet-informed model projections. Walleye pollock 
SSB and catch projections spanned approximately an order 
of magnitude across models, and oscillations were evident 
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in projections from model M5 (Supplementary material 
Appendix 1 Fig. A4, A5). M5 model projections for snow 
crab and tanner crab also exhibited oscillations, but projec-
tions from the remaining models were similar and relatively 
more stable (Supplementary material Appendix 1 Fig. A4). 
Relative to estimates from single species stock assessments, 
the models did not closely capture high frequency changes 
in SSB that were evident in some species (e.g. red king 
crab, walleye pollock, Pacific cod), but were more successful 
matching overall biomass trends, for instance, in Pacific cod, 
arrowtooth flounder, northern rock sole, yellowfin sole and 
red king crab (Supplementary material Appendix 1 Fig. A4).

Similar to other food web models, the calibrated MSSMs 
synthesize diverse types of information that varied in avail-
ability and quality for the represented species (Fulton et al. 
2011). The calibration procedure was designed to reflect 
the relative biomass of the different species and used fish-
ing mortality and biomass estimates from individual species 
assessments. This approach was preferred for computational 
efficiency and to avoid issues related to scaling ground trawl 
survey data since they frequently only cover a portion of the 
stock and a subset of sizes and/or ages. A similar approach 
was used in other MSSM studies (Blanchard  et  al. 2014, 
Jacobsen  et  al. 2017), recognizing issues such as specified 
or estimated natural mortality rates used in the assessment 
model.

Model evaluation

For all models predictive performance in relationship to 
predator–prey interactions was evaluated following a pat-
tern oriented modeling approach (Grimm  et  al. 2005). 
Specifically, we forced the calibrated models with historical 
time series of fishing mortality rates and compared predicted 
predator diets averaged over a decade (2005–2014) outside 
the calibration period to observations averaged over the same 
period. Two metrics of fit were calculated. First, for each 
predator species a measure of deviance explained (R2) was 
calculated to assess overall model fit to empirical observa-
tions of diet data following R2 = (Dnull − Dres)/Dnull, where Dnull 
is the deviance from a null model wherein all prey groups 
are assumed to contribute equally to a predator species’ diet 
across all body masses and Dres is the deviance when diets 
are predicted by the size spectrum model. To accommodate 
proportions, the deviance based on the likelihood of the data 
was calculated assuming the data were Dirichlet distributed. 
Extremely poor model fits can result in negative R2 values; 
a value of 1 indicates a perfect match between modeled and 
predicted diets. Mean observed diet proportions were cal-
culated in the same manner as those used in the calibration 
procedure for the diet-informed models. For many species, 
sufficient data were generally available for body mass bins 
larger than 4 g. Second, the percentage of correctly predicted 
strong linkages between predators and their fish and crab 
prey was calculated. The measure emphasizes correct predic-
tion of linkages that are more likely to influence predator–
prey dynamics. We considered linkages strong and a positive 

match when both simulated and observed diet proportions 
were greater than 5%.

Trophic cascades

We compared the strength of fishing-induced trophic cas-
cades between models by first projecting the communities 
forward to equilibrium assuming no fishing mortality (F = 0). 
The unfished equilibrium communities were then projected 
forward but assuming Fs corresponding to mean 2005–2014 
levels until a new fished equilibrium was reached. We exam-
ined the relative change in equilibrium unfished and fished 
abundance size spectra. Fishing tends to target large-bodied 
individuals, so we anticipated that the ratio between abun-
dance spectra (unfished/fished) would exceed 1 for the larg-
est size classes. If fishing induces strong trophic cascades, we 
would also expect a prominent wave pattern in the abundance 
ratio extending down to smaller body size classes, the waves 
reflecting alternating changes in the abundances of predators 
and their smaller-bodied prey (Andersen and Pedersen 2010, 
Houle et al. 2012, Rossberg 2012). The strength and reach of 
the trophic cascades correspond to the wave amplitude and 
the level of damping down the size spectrum.

To compare trophic structure and clarify the importance 
of predation within the predator community across mod-
els, we calculated a relative measure of trophic level (TLrel). 
Pelagic and benthic resource spectra prey were assigned a TL 
of 0. Consequently, predators that feed exclusively on pelagic 
or benthic resource spectra prey will have a TLrel of 1, and 
higher TLrel values indicate increased dependence on prey 
from the predator community. TL was calculated following 
Cortes (1999).

Data deposition

Model R code and data used to parameterize the EBS mod-
els are available from Figshare: <https://doi.org/10.6084/
m9.figshare.7158635.v1> (Reum et al. 2018).

Results

Multi-model evaluation

In general, the nondiet-informed models (M1, 2 and 3) 
all poorly predicted the diets of predators that fed heavily 
on fish and crabs based on strong prey linkages. For those 
predators (Pacific cod, Pacific halibut, walleye pollock and 
sculpin), average percentage of correctly assigned linkages 
ranged between 14 and 20% (Table 2). Average R2 values 
were also poor: 0.41–0.55 (Table 2). In contrast, the diet-
informed models (M5, 6) performed markedly better in 
terms of R2 (averages: 0.80 and 0.82, respectively) and the 
percentage of correctly assigned prey linkages (averages: 67 
and 49%, respectively; Table 2). Among individual predators, 
all showed improvements in both R2 and the correct assign-
ment of strong linkages between nondiet- and diet-informed 
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models, with Pacific halibut being the lone exception with 
respect to R2 (Table 2). The largest improvements in predic-
tive performance were for Arrowtooth flounder; nondiet-
informed R2 values ranged from −0.59 to −0.065, but values 
for the diet-informed models were 0.82 and 0.87 (M5 and 
M6, respectively; Table 2). Similarly, the percentage of cor-
rectly assigned prey linkages increased from 10 to 15% in 
the nondiet-informed models to 80% in the diet-informed 
models (Table 2).

For predators that fed heavily on pelagic and benthic 
resource spectra prey (flathead sole, foragefish, northern rock 
sole, other flatfish, Alaska plaice, yellowfin sole), the improve-
ment in diet predictive performance was more modest (Table 
2). Average R2 values ranged from 0.88 to 0.90 among the 
nondiet-informed models and were 0.96 and 0.97 for the 
diet-informed models (Table 2). Overall, M6 performed 
best in terms of R2 averaged across all predators, but M5 
performed better based on the average percent of correctly 
assigned strong prey linkages (Table 2).

All models generally captured a decrease in pelagic and 
increase in benthic resource spectrum prey with increas-
ing predator size. The diet-informed models, however, were 
considerably better at predicting dome-shaped relationships 
between benthic resource spectrum prey proportions and 
predator mass (e.g. Pacific cod, Pacific halibut and arrow-
tooth flounder; Fig. 2). The diet-informed models also cap-
tured increased cannibalism with size in walleye pollock, 
the biomass-dominant predator in the EBS. Increased con-
sumption of walleye pollock with size was also captured bet-
ter for Pacific cod, Pacific halibut and arrowtooth flounder 
(Fig. 2). In general, nondiet-informed models overestimated 
the contribution of forage fish and yellowfin sole in the diets 
of smaller predators (less than ~100 g), but this was not the 
case for the diet-informed models (Fig. 2). The level of fit to 

diet data was poor for some predator–prey pairs regardless 
of model. For instance, forage fish were underrepresented in 
Pacific halibut diet across models (Fig. 2).

Trophic cascades

Strong fishing-induced trophic cascades were apparent based 
on large alternating changes in the relative abundances of 
predators and their smaller sized prey (Fig. 3A). Trophic cas-
cades were stronger in the nondiet-informed models and were 
more dampened in the diet-informed models where alter-
nating changes in abundance attenuated more rapidly with 
decreasing predator size (Fig. 3A). The differences in pattern 
arise from different levels of predation across size classes at 
the community level (Fig. 3B). Relative to the diet-informed 
models, predation mortality in the nondiet-informed models 
is higher (maximum value: 12 versus 4 year−1) over a larger 
range of body sizes (~10−4 to 102 versus ~1 to 102 g; Fig. 3B). 
Consequently, top–down numerical control is higher and 
extends further up the size spectrum in the nondiet-informed 
models.

Overall, the maximum TLrel reached by predators in 
the diet-informed models was ~0.5 higher than in the 
nondiet-informed models, indicating a longer food chain 
and higher reliance in terms of biomass on prey from the 
predator community (Fig. 4). Moreover, whereas TLrel varied 
nonlinearly with body size for all predator species in the 
nondiet-informed models, the relationships were more lin-
ear and positive in the diet-informed models (Fig. 4). The 
relationship between TLrel and body size was also less fixed 
in the nondiet-informed models: under fished conditions, 
TLrel decreased ~0.25 in some body size classes. Changes in 
the diet-informed models were generally less than 0.1 across 
body sizes (Fig. 4).

Table 2. Measures of fit to observed average predator diets (2005–2014) for nondiet-informed (M1–3) and diet-informed (M5, 6) EBS models. 
R2 corresponds to the proportion of deviance explained by the model (extremely poor fits may result in negative R2 values; 1 corresponds to 
a perfect fit. Strong links indicates the percentage of correctly predicted strong linkages between predators and their fish and crab prey and 
emphasizes correct assignment of links that are likely to influence predator dynamics. Values in bold indicate the best performing model for 
a given predator and performance measure. Predator superscripts indicate main prey of adults: 1, fish and crab; 2, pelagic and other benthic 
invertebrates.

Predator

R2 % Strong links (fish and crab prey)

M1 M2 M3 M5 M6 M1 M2 M3 M5 M6

Arrowtooth flounder1 −0.592 −0.076 −0.065 0.824 0.867 10.0 15.0 15.0 80.0 80.0
Flathead sole1 0.877 0.901 0.887 0.936 0.945 – – – – –
Foragefish2 0.834 0.814 0.833 0.902 0.902 – – – – –
Pacific halibut1 0.540 0.563 0.655 0.558 0.580 37.2 39.5 44.2 46.5 55.8
Northern rock sole2 0.914 0.857 0.905 0.982 0.983 – – – – –
Other flatfish2 0.951 0.951 0.946 0.996 0.997 – – – – –
Pacific cod1 0.648 0.662 0.683 0.853 0.896 6.1 15.2 21.2 90.9 72.7
Alaska plaice2 0.923 0.930 0.914 0.999 0.998 – – – – –
Walleye pollock1 0.748 0.751 0.751 0.913 0.925 0 0 0 80.0 0
Sculpin1 0.746 0.692 0.732 0.851 0.850 0.156 15.6 18.8 40.6 37.5
Yellowfin sole2 0.903 0.847 0.900 0.973 0.973 – – – – –
  Fish and crab eaters (mean) 0.418 0.518 0.551 0.800 0.824 13.8 17.1 19.8 67.6 49.2
  Pelagic and benthic 

invertebrate eaters (mean)
0.900 0.883 0.898 0.965 0.966

  All predators (mean) 0.681 0.717 0.740 0.890 0.901 13.8 17.1 19.8 67.6 49.2
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Figure 2. Examples of correspondence between out-of-sample modeled and observed diet proportions for a subset of predators and prey 
from the model. Closed grey circles are mean observed diet proportion; grey error bars indicate 95% confidence intervals. Diet observations 
and model predictions are averages for the 2005–2014 period.

Figure 3. (A) Abundance spectra of equilibrium unfished communities relative to fished equilibrium communities (fishing mortality levels 
held constant at mean 2005–2014 levels). (B) Average predation mortality rates on fishes under equilibrium conditions (the average is 
weighted by species-specific abundances at size).
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Discussion

MSSMs have gained popularity since their mathematical for-
malization as tools for representing real food webs, in part 
because prey selection is represented mechanistically, governed 
by only a few parameters, and does not depended on preda-
tor diet information (Andersen et al. 2016, Blanchard et al. 
2017). However, as we show for the EBS, models that 
adopt simple prey preference scaling rules may yield emer-
gent predator diets that correspond poorly to observations. 
Rather, the diet data support extending the prey selection 
theory underpinning MSSM to accommodate both size- and 
species-dependent prey preferences which, in turn, can lead 
to differing responses to fishing perturbations. We show that 
the reach and strength of fishing-induced trophic cascades are 
reduced substantially when species-specific ontogenetic shifts 
in prey preference are present in size-structured food webs. 
Further, other aspects of model behavior, including emergent 
predator TLrel and its response to fishing-induced shifts in 
the community, qualitatively differ depending on how prey 
preference is represented.

As conventionally structured, MSSMs predict strong 
fishing-induced trophic cascades (Andersen and Pedersen 
2010, Houle  et  al. 2012, Rossberg 2012) which have even 
been evoked as a possible mechanism to explain reported 
fisheries catches for the East China Sea, a topic of intense 
debate (Szuwalski  et  al. 2017). If predation mortality rates 
are high over a range of size classes, as observed in all three 
nondiet-informed EBS models, the potential for top–down 
control exists and a trophic cascade can propagate down the 
size spectrum (Andersen and Pedersen 2010). In contrast, the 
diet-informed models indicated lower overall predation mor-
talities, and significant predation occurred only at body sizes 
larger than ~1 g, thus limiting the relative reach and strength 
of the trophic cascade. In shelf ecosystems, weak direct preda-
tion on small fish size classes by fish predators may be a more 

general phenomenon because many fishes (e.g. cottids, pleu-
ronectids, gadids) have pelagic early life history stages, but 
forage more extensively near the seafloor and deepen their 
distribution as they grow (Mindel et al. 2016, Barbeaux and 
Hollowed 2017). Consequently, overlap in space, and thus 
encounter probabilities, may be lower than implied by assum-
ing spatial overlap patterns based on larger individuals which 
are generally captured in bottom trawl surveys and that were 
used to parameterize M2. If similar patterns of piscivory hold 
in other shelf ecosystems, nondiet-informed MSSMs may 
systematically overestimate the indirect effects of fishing on 
community size structure. For instance, predicted increases 
in fishery yields resulting from the cascading effects of remov-
ing large-bodied predators may be overestimated if modelled 
top–down control through piscivory is stronger than condi-
tions in the field (Andersen and Pederson 2010).

Inclusion of size and species-dependent prey preferences 
had two principle effects on trophic structure. First, longer 
food chains based on maximum TLrel values emerged in the 
diet-informed models because several species in the larg-
est size classes relied more heavily on prey from the preda-
tor community. The higher reliance, however, did not result 
in stronger top–down control relative to nondiet-informed 
models because 1) heavy feeding on fish and crab was limited 
to predators in the largest but also least abundant size classes 
and 2) predation mortality was focused on a much narrower 
range of body sizes. Second, the emergent TLrel of predators 
was more stable in response to fishing perturbations, in part 
because the diet-informed prey species preferences implied 
higher levels of specialization than the nondiet-informed. 
This latter observation suggests that changes in trophic 
level metrics that reflect ecosystem status (e.g. mean com-
munity trophic level, cumulative trophic patterns; Cury and 
Christensen 2005, Link et al. 2015), will primarily be driven 
by species composition and size structure rather than through 
change in the trophic level of individuals themselves.

Figure 4. Top panel: relative trophic level of predator species as a function of body size under unfished conditions. Bottom panel: change in 
trophic level at size for predators between unfished and fished conditions. The dashed horizontal lines indicate the maximum relative tro-
phic level reached by a predator species in each model.
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We have focused on the effects of size and species-specific 
prey preferences on trophic cascades within the predator 
community, but an important future task is to evaluate how 
trophic cascades propagate to other functional groups in the 
plankton and benthos. Fishing-induced trophic cascades can 
propagate down to phytoplankton and nutrients (Frank et al. 
2007, Casini et al. 2008, Baum and Worm 2009), but the 
potential scope for trophic cascades in MSSMs are limited 
by the resolution of functional groups. For simplicity, non-
fish groups are usually represented by background resource 
spectra that are either static or modeled dynamically (e.g. as a 
semi-chemostat or assuming logistic growth; Andersen et al. 
2016). However, the MSSM framework is general and func-
tional groups typified by different feeding modes, body size 
distributions, growth rates and life histories can be repre-
sented (Heneghan  et  al. 2016, Blanchard  et  al. 2017). For 
the EBS model, we explicitly represented three crab species, 
but including other benthic groups with substantially differ-
ent feeding modes (e.g. suspension feeders, predatory poly-
chaetes, carnivorous crustaceans) may be important because 
they compose a large fraction of fish diets. Inclusion of size 
and species-specific prey preferences as we propose should be 
useful for representing the biphasic (pelagic larval, demersal 
adult) feeding behavior common to many benthic animals 
and better capture their functional role as benthopelagic 
couplers.

We note that inclusion of size-dependent prey species 
preferences in MSSMs enables exploration of more general 
questions as well. For instance, it remains to be seen under 
what conditions size-dependent prey species preferences 
may increase trophic cascade strength or reach. A systematic 
evaluation of how different types of fisheries impact ecosys-
tems composed of predators with varying degrees of ontoge-
netic shifts in prey preference would be a valuable exercise. 
Similarly, the implications of prey specialization by small (lar-
val) predators (Young and Davis 1990) could also be explored 
if resource spectra are broken out into a wider range of func-
tional groups. A goal of the present study was to calibrate 
an MSSM to a real ecosystem with special regard to preda-
tor–prey interactions, but food webs in other habitats (e.g. 
off-shelf pelagic ocean, coral reefs, estuaries, lakes) may differ 
in terms of species diversity and functional composition, and 
may therefore respond differently to fishing pressure.

The availability of diet data is remarkably high for the 
EBS (Livingston  et  al. 2011, 2017). If researchers wish to 
calibrate MSSMs to specific ecosystems which are diet data-
limited, we suggest the development of multiple MSSMs 
with prey preference parameterizations that correspond to 
different plausible hypotheses. The shape and magnitude of 
size and species-specific prey preference functions could be 
set to reflect the hypothesized importance of size-dependent 
habitat shifts or levels of prey specialization. The calibrated 
model set could then be used to generate ensemble projec-
tions to better capture structural uncertainty (Hill  et  al. 
2007). Alternatively, it may be possible to infer size and 
species preferences based on patterns in other systems. For 

instance, predator and prey traits such as body size, morphol-
ogy, phylogeny, physiology, behavior and co-occurrence have 
been used to infer predator–prey linkages in food web net-
works (Gravel et al. 2013, Spitz et al. 2014, Rohr et al. 2016). 
Expanding these approaches to model and infer ontogenetic 
shifts in prey preference would be valuable for parameter-
izing MSSMs. We emphasize, however, that predator diet 
information will remain important for constraining model 
parameterization, validating predator–prey interactions, 
and reducing projection uncertainty, and should be a high 
research priority. That said, fish stomach content data have 
their own well-documented issues, including potential posi-
tive biases towards large prey and hard-bodied prey which 
take longer to digest (Hyslop 1980). Stable isotopes may offer 
an additional, alternative method for generating estimates of 
assimilated prey (Layman et al. 2012).

The theory underpinning MSSMs has evolved rapidly in 
the last decade (Blanchard et al. 2017), but critical tests of 
its ability to adequately capture predator–prey interactions in 
real ecosystems have lagged. For the first time, we show that 
standard assumptions embedded in the prey selection mecha-
nism poorly predict important predator–prey interactions in 
a real food web. Instead, the diet data support modifying the 
mechanism to include both size and species-specific prey pref-
erences. We show that revising MSSMs to do so has impli-
cations for model behavior with respect to fishing-induced 
trophic cascades. Our findings call for additional scrutiny in 
evaluating and testing predator–prey interactions in MSSMs, 
and suggest heightened caution is warranted when interpret-
ing the outcomes of previous studies. While we have focused 
on improving predictions of trophic linkages in MSSMs, 
we note that other aspects of the framework also require 
additional careful consideration, particularly with regard to 
stock–recruitment relationships and parameters controlling 
reproductive efficiency (Andersen et al. 2016, Jacobsen et al. 
2017). Ultimately, like other ecosystem models, broad-scale 
adoption of MSSMs for management applications will partly 
depend on confidence in their projections (Plagányi  et  al. 
2014, Collie  et  al. 2016), and incorporating ontogenetic 
shifts in prey species preferences offers a promising direction 
for improving model adequacy.
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